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ABSTRACT: In an earlier paper, outlines of footprints of persons walking normally were studied to determine whether different people make
verifiably distinct footprints. Our basic null hypothesis is: given a footprint outline trace made by Subject A (Alice), then Subject B (Bob), a distinct
person, cannot produce a footprint outline trace indistinguishable from that of Alice. We showed in the previous work that the probability of a
chance match is less than 10−8. In this paper we report two new advances in our research. First, we establish a rigorous mathematical framework for
calculating worstcase and average chance-match probabilities. Second, we repeat the previous experiment to substantiate the earlier results, but with
an expanded population sample size and a more representative and significantly bigger repeated sample. These improvements and a new automated
tracing procedure for extracting all numerical measures lead to a sharpened accuracy with average chance match probabilities of 7.88 × 10−10 for a
general population. In other words, the odds of a chance match are one in 1.27 billion.
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Forensic barefoot morphology comparison examines the shapes
of barefoot impressions in order to determine whether a suspect
should be included or excluded as the person who made a footprint
linked to a crime scene (1–5). In some cases, the perpetrator of a
crime may have walked through the scene in bare or socked feet.
In other cases, footwear impressions can be positively identified
to a crime scene. When a suspect is arrested, his barefoot impres-
sions can be compared to the bare or socked impressions at the
crime scene, or to impressions left inside footwear that have been
identified (6).

As with any individualizing technique, the question of primary
importance concerns the fundamental uniqueness of the characteris-
tic being compared. If ridge detail is visible in a barefoot impression
at the crime scene, then the identification of a suspect can be made
based on the principles used in fingerprint identification. However,
when it is simply the shapes of the weight-bearing areas of a foot
that are being considered, the underlying question of uniqueness or
rarity must be established (5,7–10).

The notion that “everyone is different” arises when we look
through a high school yearbook and appreciate that the human eye
can readily distinguish one person from another. Even in the case
of monozygotic twins, family members and close friends readily

1 Forensic Identification Research Services, Royal Canadian Mounted Police,
Ottawa, Ontario K1A 0R2 Canada.

2 Business Survey Methods Division, Statistics Canada, Ottawa, Ontario K1S
1A1 Canada.

3 School of Mathematics and Statistics, Carleton University, Ottawa, Ontario
K1S 5B6 Canada.

4 The Orthopaedic Group, Clairton, PA 15025 and Robotics Institute, Dept.
of Computer Science, Carnegie Mellon Univ., Pittsburgh, PA 15213.

∗ This research was supported by grants from the Natural Sciences and En-
gineering Research Council (NSERC) of Canada and the Canadian Police Re-
search Centre (CPRC).

Received 31 July 2004; and in revised form 23 April 2005; accepted 23 April
2005; published 3 Aug. 2005.

discriminate subtle differences in appearance. Thus, morphological
characteristics of an individual’s appearance can be used to identify
them for social reasons, or for forensic applications.

The human skeleton is made up of 206 bones, 26 in each foot.
There are 20 muscles in each foot. There are considerable varia-
tions in the component parts of the foot and ankle in terms of bone,
muscle, ligaments, and tendons. These variations are reflected in
the degree of contribution of each part to the function of the foot
as a whole (11). The degree of contribution of each individual
component is considered integral to the connected function of the
foot during gait. Approximately 63 PSI peak pressure (43.3 N/cm2)
is placed on the bottom of an adult foot while walking normally
(12). The progression of weight bearing across the normal foot
during gait has been well documented (13). Similarly, the pressure
distribution of weight through gait has been studied using foot-
prints that were created using a barograph (14–16). Disease, injury
or surgery can cause differing weight bearing patterns (14,17,18).
Hence, differences will exist in pressure distribution and weight
bearing through gait for two distinct individuals. Analysis of mul-
tiple factors in the human footprint should be expected to sample
variations in bone geometry, muscle length, ligament tension and
the gait cycle itself. Barefoot impressions represent a combination
of multiple data inputs that may be used by experts to distinguish
between them.

In our pilot study (5), a population of 960 Caucasian males was
studied. Footprint impressions were collected from these volun-
teers using an inkless pad and specially-treated paper. These were
analyzed to provide the probability distributions of the foot impres-
sion measurements for the general population. A second group of
20 volunteers (11 male, 9 female) was measured nine times (three
days over a one week period, three times each day) to provide a rep-
etition sample. Using principal component analysis and standard
deviation ratios of inter- and intra-population variances, the prob-
ability of a chance match was approximately 10−8. This repetition
group of 20 individuals was too small a size to be an ideal random
sample.

Copyright C© 2005 by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. 1
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FIG. 1—A pair of barefoot impressions collected using the inkless pad.

Concerns about the repeated sample being a genuine cross-
section of the population was one factor that led to this second,
larger, corroboratory study. We study a larger population, n= 5755,
in this follow-up work, with a repetition sample of size n= 134.
We have improved our estimates of the statistical probability of a
chance match. The general population was expanded by a factor of
six, and now includes 47% females and 12% non-Caucasians.

Materials and Methods

The same methodology for collection of the data was employed
in this paper as in the pilot study (5). An inkless pad (Identicator)
and chemically treated paper were used to collect the impressions.
Each person was instructed to walk normally; to step onto the pad
with one foot; then onto the floor with the other; then onto the paper
with the next step of the inked foot; and to continue walking beyond
the pad. This procedure happens to be compatible with the two-step
gait initiation protocol (19). A practice run-through was performed
to familiarize each subject with the process. The procedure was
performed on a randomly chosen foot and then repeated with the
other foot to produce a pair of impressions on each sheet of paper
(See Fig. 1).

Each impression was scanned directly using an Epson GT10000
scanner set at 72 dpi. Each trace was then examined by a technician,
under the supervision of the lead author, and any smudges found to
be extraneous were removed using Corel PhotoPaint tools. On the
rare occasions where the impression of the big toe was connected
to the sole, a man-made channel was inserted by the technician
using an erasure tool to give a straight one millimeter gap to ensure
separation. A missing toe (e.g., if the smallest toe did not make
contact with the paper) was represented by a single point, since the
software rejected any scan that did not contain exactly 12 items: ten
toes and two soles. Each trace was scanned and the data passed to
an automated graphics program running under AutoCAD R13. The
one significant change in the process employed in the current study

is that the tracing of the outline of each footprint impression was
done by the AutoCAD software program, instead of being traced by
a graphic artist.

The second phase in both studies was a repeated-measure exper-
iment to determine the intra-personal (individual) variations of the
footprint measurements. Three sets of barefoot impressions were
collected daily from each subject over three days spread over a
week. The magnitudes of the variations between different foot-
prints of the same individual were contrasted to the interpersonal
(population) variations.

The Alignment of the Foot and the Measurements Taken

The convex hull of the trace of the sole of the foot was found and
successive segments joining adjacent pairs of pixels of the convex
hull found. The line segment of maximal length on each side of the
sole was selected. The software excluded the middle third of every
foot to correct for rare instances of exceptionally flat feet. This gave
the correct answer for all normal feet and provided meaningful and
consistent results for all footprints. This was also necessary for
persons with high arches who produced faint or no markings in the
middle third of their prints.

We found that there is always a significantly longest segment
of the boundary of the cone on each side of the sole. These lines
were projected to meet at the apex of an enveloping cone (5) below
the heel. The central axis of the footprint outline was defined to
be the bisector of the tangent cone, i.e., the line bisecting the cone
angle through the apex. The outline of the footprint was rotated
so that the central axis was aligned vertically with the apex at the
bottom (See Fig. 2). The central axis has proven to be a stable
concept, and other measurements depend on it.

The measurements were divided into five groups (See Fig. 3. See
Table 1 for definitions):

a) Foot measurements (lengths, widths, LD/RD, LE/RE, LF/RF,
LG/RG, etc.

b) F-points (coordinates of points of metatarsal ridge, toes, etc.)
c) L-points (widths of slices orthogonal to the axis, etc.)
d) Areas (toes, soles.)
e) Angles.

The foot measurements, in particular, were dependent on the
alignment of the prints. The details of the measurements can be
found in our earlier study (5), and are not repeated here. To sum-
marize the process: the print was aligned so that the bisecting line
was vertical, certain key points were determined (e.g., the cen-
ter of the heel), and the magnitudes of these distances and angles
were stored in a data base. The database was organized to include
demographic data such as age, sex, race, height, and weight.

The New Population and Repetition Samples

A major effort was made to collect a large set of prints from
distinct individuals, both in Canada and the USA. Volunteer sub-
jects were found in shopping centers, schools, training academies,
etc. The goal was to build a large representative sample. Approxi-
mately half of the subjects were found in Ottawa, Ontario, Canada.
However, since many measurements were done in public places, es-
pecially during the summer months, there were an unknown number
of visitors from other locales. Almost 10% of the entire sample was
collected in the USA. The remaining 40% was collected across
Canada, with an emphasis on provinces other than Ontario.
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FIG. 2—Vertical alignment of the impression, illustrating the central axis.

The data were collected for each pair of feet. A dBASE c©
database was constructed to record and preserve the data for
this and future studies. Table 2 contains three of many of the
measurements gathered.

We received outstanding assistance from staff, faculty, and stu-
dents at Carleton University during August 2003 in the collection
of the repetition sample. The August timing of the data collection
minimized the inconvenience to the subjects; many wore light sum-
mer footwear, and it was between the Summer and Fall terms. The
repeated sample consists of 134 individuals: 60 males (49 Cau-
casian) and 74 females (64 Caucasian). The University population
included persons from various ethnic origins. The gender-specific
distributions of the sample show close resemblance to that of the
large population samples, especially in terms of variability, which
is the critical part of the study (see Tables 2, 3 and 4).

Statistical Analysis

This experiment has a full factorial design with two factors.
First, 134 volunteer subjects provided three sets of barefoot impres-
sions daily over a three-day period. The prints were scanned and
the data passed to an automated graphics program running under
AutoCAD R13. The prints were aligned vertically and measure-
ments performed using exactly the same protocols as in our
previous pilot study (5). In total, 134 × 3 × 3 sets of numerical mea-
surements for each foot were taken in the repeated measurements
phase. Approximately 200 measurements were gathered from every

FIG. 3—Some of the many points and measurements taken on the barefoot
impression.

barefoot impression; the database has 323 fields. Some measure-
ments depend on the foot length (e.g., foot width at 1 cm. intervals),
so some fields can be empty. About one-fifth of this data was uti-
lized in the current study. The two statistical packages used for the
analyses were SAS version 8 and SPSS 7.5.

These 134 repeated measure subjects were treated as a ran-
domly selected sample of the general population. This permitted the
analysis of the data as a two-way random-effects model (variance-
components model) with two main variance components: the per-
sonal effect and the daily effect. For each quantitative measure, the
variance of the personal effect, σ2

P , represents the inter-personal
(i.e., population) variance, and the variance of the daily effect,
σ2

I , is the intra-personal (i.e., individual) variance. These variance
components are constructed from the three daily averages and are
estimated from classic analysis of variance (ANOVA). The use of
daily average for constructing variance components is analogous to
the imprint worn inside a shoe, where one finds the pattern worn
by the average of many impressions. The square roots of these two
variance components give the corresponding standard deviations
σP and σI . The standard deviations help determine the size of the
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TABLE 1—Field names, their location, and definitions.

Length of Foot, from bottom of Heel to Tip of
LLENGTH Toe giving the Greatest Measurement

LBWIDTH width of ball of foot
LHWIDTH width of heel
LD1 center of heel to center of 1st toe
LD2 center of heel to center of 2nd toe
LD3 center of heel to center of 3rd toe
LD4 center of heel to center of 4th toe
LD5 center of heel to center of 5th toe
LE1 bottom of heel to 1st metatarsal head
LE2 bottom of heel to 2nd metatarsal head
LE3 bottom of heel to 5th metatarsal head
LF1 bottom of heel to center of 1st toe
LF2 bottom of heel to center of 2nd toe
LF3 bottom of heel to center of 3rd toe
LF4 bottom of heel to center of 4th toe
LF5 bottom of heel to center of 5th toe
LG1 center of heel to 1st metatarsal head
LG2 center of heel to 2nd metatarsal head
LG3 center of heel to 5th metatarsal head
LDBA1 length of the outer side tangent to the foot
LDBA2 length of the inner side tangent to the foot
L1A angle between horizontal and a line drawn between

C1 and PIP
L2A angle between horizontal and a line drawn between

AIP and PIP
L3A angle between horizontal and a line drawn between

AIP and TTP
LABA1 angle between horizontal and the outer tangent
LABA2 angle between horizontal and the inner tangent
LD1A area of first toe
LD1P perimeter of first toe
LD2A area of second toe
LD2P perimeter of second toe
LD3A area of third toe
LD3P perimeter of third toe
LD4A area of fourth toe
LD4P perimeter of fourth toe
LD5A area of fifth toe
LD5P perimeter of fifth toe
LCENA area of foot minus the toes
LCENP perimeter of foot minus the toes

TABLE 2—General population sample (n = 5755 ).∗

Height Shoe
Male Caucasian Age (cm) Size

Mean or % 53.45 88.03 35.82 172.98 9.04
Std. Dev. 11.93 10.41 1.78
Males (n = 3076) Mean or % 87.61 35.70 180.07 10.06

Std. dev. 11.71 7.09 1.48
Females (n = 2653) Mean or % 88.69 35.95 164.78 7.85

Std. dev. 12.18 7.12 1.30

∗ There was no sex recorded for a small number of subjects.

TABLE 3—Repetition population sample (n = 134).

Height Shoe
Male Caucasian Age (cm) Size

Mean or % 44.78 85.07 37.35 170.74 8.78
Std. dev. 13.45 9.95 1.85
Males (n = 60) Mean or % 83.33 36.67 178.81 10.25

Std. dev. 14.42 7.10 1.50
Females (n = 74) Mean or % 86.49 37.88 164.21 7.71

Std. dev. 12.73 6.54 1.26

TABLE 4—General population versus repetition sample: comparison of
variances.

Levene’s
Variable F statistic p-value Statistic p-value

Males Height 0.0139 0.9061 0.0277 0.8677
Shoe size 1.1288 0.2881 1.1507 0.2835

Females Height 2.5681 0.1092 2.2941 0.1300
Shoe size 0.0134 0.9080 0.0115 0.9145

FIG. 4—Normal probability distribution curves. A) Normal distribution
for a measurement for the entire population. B) Normal distribution taken
from repeated measurements for an individual whose measure coincides
with the average value for the population. The result of the intersection of
curves A) and B) is relatively large, and represents the worst-case value
given by equation (III). C) Normal distribution taken from repeated mea-
surements for an individual whose measure coincides with a value in the
wing of the normal distribution curve for the population. The chance match
probability is represented by the intersection of curves A) and C), which
is relatively small. The average case chance match probability is given by
equation (IV). It is found by averaging this intersection across the entire
population range.

tolerance window, or bin, and this size determines the chance match
probability. The ratio of the two standard deviations,

ρ = σI /σP ,

is called the standard deviation ratio. The standard deviation ratio
gives the fraction of the total population distribution of a single
measure, such as foot length, that is covered by the individual
variation. The smaller the standard deviation ratio is, the more
useful the measure and the more accurate a match of impressions
that is made using this measure. A small standard deviation ratio ρ

indicates a narrow overlap of the individual variation with that of
the population (See Fig. 4).

Results

Our major results include contributions to both the theoretical
framework and the analysis of new experimental data. We consider
the sensitive problem of statistical independence of data found
in barefoot impressions for both single-dimensional and multiple-
dimensional identification. Our aim is to provide a rigorous sci-
entific foundation for the calculation of chance match probabilities
with a mathematical guarantee of orthogonality of the variables and
statistical independence.
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Chance Match Probability

One fundamental scientific challenge for modern forensic iden-
tification is the handling of chance match probability. For instance:
how likely is it that a second unrelated person can match the foren-
sic evidence collected from a crime scene or victim? In order to
achieve the infinitesimal chance match probabilities that have been
reported, modern forensic procedures use multiple characteristics
or features of the evidence for identifying matches. In DNA typing
(20), for example, these are either various alleles at a single locus, or
genotypes of multiple loci. The statistical independence between
alleles at a locus is sometimes addressed using Hardy-Weinberg
Equilibrium, the condition in which allele frequencies are constant
and inherited independently of one another. The statistical indepen-
dence of genotypes between loci is called Linkage Equilibrium. To
date, there is no empirical evidence that suggests either of these as-
sumptions are violated in human populations. The slight deviations
observed from Hardy Weinberg Equilibrium are adjusted with a
θ correction (21).

Let us first concentrate on matches for a single quantitative mea-
sure x. Once this measure is obtained from the individual subject,
say xs , a tolerance interval or bin, [xs − ασI , xs + ασI ], is cre-
ated where σI is the individual standard deviation and α is the
bin size. We define ω = ασI and call 2ω the bin width. Note that
αρσP = ω. A measurement x is deemed to be a match to the subject
xs in question if it falls inside the interval [xs − ω, xs + ω].

Assume that in the general population the quantitative measure
x has a probability distribution with a density function f (x), then
the chance match probability is given by

p(xs, ω) =
∫ xs+ω

xs−ω
f (w) dw. (I)

The Gaussian normal distribution function f (w) = 1√
2πσ

e
− (w−µ)2

2σ2

is a major type of probability density distribution where µ is the
given mean, and σ the standard deviation. Its cumulative distribu-
tion function is closely related to the well-known error function,
erf(x), defined by

erf(x) = 2√
π

∫ x

0
e−t2

dt.

Note that erf(x) = 1√
2π

∫ √
2x

−√
2x

e−t2/2
dt.

The Gaussian normal distribution gives rise to the chance match
probability function

P (xs, ω) = 1√
2πσ

∫ xs+ω

xs−ω
e
− (w−µ)2

2σ2 dw (II)

that depends on both the individual measure and the bin width.
Theorem 1. Let the quantitative measure xs in the general pop-

ulation follow a normal probability distribution with given (fixed)
mean µP and standard deviation σP .

a) Fix the bin half-width at ω and fix the individual variance
σ̃I . The maximum or worst-case chance match probability
is achieved when the subject measure xs coincides with the
population mean, xs = µP . The maximum (or worst-case)
probability is then given by

Pmax(ω) = 1√
2πσP

∫ µP +ω

µP −ω
e
− (ω−µP )2

2σ2
P dw = erf (

√
2αρ/2)

(III)

b) The average, or expected, chance match probability for a sub-
ject randomly chosen from the general population is given

TABLE 5—Worst-case and average chance match probabilities using a
single measure.∗

Standard
Deviation Worst-case Chance Average Chance Ratio: Avg Case

Ratio Match Probability Match Probability ÷ Worst Case

1:2 0.3829 0.2763 0.7216202
1:4 0.1974 0.1403 0.7107761
1:10 0.0797 0.0564 0.7076956
1:20 0.0399 0.0282 0.7072540
1:40 0.0199 0.0141 0.7071436
1:60 0.0133 0.0094 0.7071231
1:80 0.0100 0.0071 0.7071159
1:100 0.0080 0.0056 0.7071126

∗ In this table we assume that a = 1. Hence the worst case chance probability
is erf (ρ/

√
2) and the average chance match probability is erf (ρ/2).

by

P̄ (ω) = E(P (x, ω)) = 1

2πσ2
P

∫ ∞

−∞
e
− (x−µP )2

2σ2
P

∫ x+ω

x−ω
e
− (y−µP )2

2σ2
P dy dx

= erf(αρ/2) (IV)

c) limω→0
P̄ (ω)

Pmax(ω) =
√

2
2 = 0.70710678.

The proof of Theorem 1 is found in Appendix 1. The ratio of
Pmax to P̄ stabilizes quickly; e.g., when the half-width ω = σI ,
the ratio is 0.70725 for ρ = 1/20 and 0.70714 for ρ = 1/40 (See
Table 5).

Equation (III) is intuitively clear: when the subject’s measure
coincides with the population mean, a large percentage of the pop-
ulation may have a measure close enough to that of the individual
to fall into the tolerance window. This represents a worst-case
scenario. When xs , the subject’s measure, moves away from the
population mean µP , the proportion of the population members
who have similar measures decreases, as can be seen in Figure 3,
and as given in Equation (IV).

It is extremely unlikely to have a subject all of whose individual
measures coincide with the corresponding population mean in all
dimensions. When multiple measures are used simultaneously for a
footprint comparison, especially if these measures are statistically
independent of each other, we cannot expect on average to be in
the situation of Equation (III). Therefore, for comparisons using
multiple measures, it is more appropriate to use the average chance
match probability given by Equation (IV). Both the worst-case and
average chance match probabilities depend only on the tolerance
window size 2ω and the standard deviation ratio ρ.

Furthermore, it is imperative to note that the chance match proba-
bilities for statistically independent dimensions can be multiplied to
obtain the overall chance match probability. In our method, the mul-
tiple measures we use for comparison are eigenvectors constructed
via a principal component analysis. These always are statistically
independent. As a result, our probability estimates are based on
mathematical theorems, and not on hypotheses that are extremely
difficult to verify or technical assumptions that might conflict with
observations.

Normality of the Data

It has been widely observed that a number of quantifiable human
characteristics, e.g., weight and height, follow a normal proba-
bility distribution in a general population. In the pilot study (5),
38 quantitative measurements derived from barefoot impressions
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TABLE 6—Normality of principal components.∗

Females n = 2653 Males n = 3076

Kolmogorov- Kolmogorov-
Smirnov Smirnov

PC Statistic p-value Statistic p-value

1 0.012434 >0.1500 0.013304 >0.1500
2 0.010478 >0.1500 0.011220 >0.1500
3 0.028236 0.0100 0.016690 0.1053
4 0.011587 >0.1500 0.014196 >0.1500
5 0.015596 >0.1500 0.015651 0.1166
6 0.014936 >0.1500 0.012477 >0.1500

∗ A p-value greater than 0.05 for the Kolmogorov-Smirnov statistic means
the distribution of the variable is not significantly different from a normal
distribution. We show the first 6 components but only use the first 5.

were selected. The normality of most of this data from each foot
was verified in a large database consisting of 960 Caucasian males.
Many other variables and control measurements compiled in the
current phase are not used here because we found that these 38
alone were sufficient to achieve our primary goal. In our much
expanded new databases, this normality is confirmed again as
most of the collected quantitative measurements closely follow
the normal distribution. The normal probability plots of variables
LLENGTH and LBWIDTH in Fig. 5 demonstrate this close fit.

There are two additional arguments that support the use of normal
distributions for calculating the chance match probabilities. First, as
has already been noted, we use principal components for our final
probability calculation. These principal components are weighted
sums of a large number (38 in most cases) of measures many
of which themselves closely follow a normal distribution. It is
well known that the Central Limit Theorem often holds for these
sums of non-independent random variables when certain regularity
conditions are met (22). Second, as in many actual applications
in other fields, violations of normality occasionally arise when
extreme values or outliers occur. However, this is not likely to
cause problems in either theory or practice.

More specifically, extreme values would in theory lead to very
small chance match probabilities by the first part of Theorem 1. As
the attached Fig. 4 illustrates, individual probability distributions
centered about these extreme personal values would have minimal
overlap with the general population probability distribution, leading
to very small chance-match probabilities. In practice, an impression
with extreme values far off from the population mean is observably
distinct from the common population and hard to mismatch in
practice. In addition, extreme values can often be data errors in the
databases that are purged during data cleaning.

As Table 6 and sample graphs (See Fig. 5) demonstrate, nor-
mality holds for most principal components constructed from the
original measurements. The only strong exception is the third prin-
cipal component in the female data. Even in this case, the normal
probability shows a fairly good fit to the normal distribution. In the
normal quantile plot, one sees that the lack of fit occurs only in the
extreme tail ranges.

The Repeated-Measure Experiment

The repeated measure experiment is a central part of our study.
Table 7 gives a summary of the estimated individual and population
variances, and their ratios, for 38 selected measurements. The ratio
of the estimated individual and population standard deviations are
tabulated for convenience. Our population variance estimates are

FIG. 5—Examples of normal probability plots for two of the original
measurements, and for two examples of the principal components.
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TABLE 7—Individual and population variances.

Estimated Estimated Estimated Estimated
Variable Population Population Individual Std. Dev.
Name Mean Variance σ2

P Variance σ2
I Ratio σI /σP

LLENGTH 246.01 365.74 0.0699 0.013827
LBWIDTH 89.23 54.10 0.0137 0.015900
LHWIDTH 48.91 28.79 0.0762 0.051440
LD1 199.93 270.77 0.0570 0.014505
LD2 206.96 307.97 0.0377 0.011065
LD3 197.98 282.02 0.0845 0.017310
LD4 185.54 238.22 0.0540 0.015055
LD5 169.33 191.33 0.0000 0.010001∗
LE1 202.38 245.33 0.0675 0.016580
LE2 204.00 231.85 0.0375 0.012724
LE3 182.54 205.24 0.0000 0.010001
LF1 245.10 366.52 0.0636 0.013171
LF2 242.24 372.53 0.0241 0.008036
LF3 232.77 341.71 0.0798 0.015281
LF4 219.68 289.59 0.0820 0.016826
LF5 202.07 245.28 0.0000 0.010001
LG1 176.52 207.96 0.0735 0.018800
LG2 177.69 194.54 0.0402 0.014374
LG3 156.63 172.55 0.0000 0.010001
RLENGTH 246.10 376.00 0.1392 0.019238
RBWIDTH 89.32 55.49 0.0080 0.012017
RHWIDTH 49.17 28.69 0.0457 0.039936
RD1 199.67 277.81 0.1114 0.020024
RD2 206.72 313.93 0.1357 0.020794
RD3 197.48 287.34 0.0702 0.015634
RD4 185.22 241.06 0.0471 0.013972
RD5 168.90 196.44 0.0249 0.011267
RE1 202.59 248.52 0.3994 0.040080
RE2 204.25 237.13 0.2321 0.031289
RE3 182.78 205.72 0.0981 0.021838
RF1 245.13 376.99 0.1692 0.021181
RF2 242.45 378.33 0.1422 0.019391
RF3 232.75 343.96 0.1711 0.022301
RF4 219.66 290.18 0.1473 0.022532
RF5 202.37 245.62 0.0792 0.017956
RG1 176.25 212.75 0.2460 0.034002
RG2 177.46 201.10 0.0790 0.019825
RG3 156.41 176.53 0.0000 0.010001

∗ The zero value here and below would normally give an estimated standard
deviation ratio of zero. This is replaced here and below with the conservative
value 100/9999 = .0100010001. . . .

taken from the large population sample, not the relatively small
repetition sample. This makes the estimated standard deviation
ratio a great deal more representative and stable.

Application of the Standard Deviation Ratio

Chance matches of measurements of a pair of barefoot impres-
sions are dependent on the number of variables used and the stan-
dard deviation ratio of each variable. For instance, from Table 5,
measurements with an estimated standard deviation ratio of 60
each provide a worstcase chance match probability of 1.33%.
These variables may be statistically correlated with each other,
so we do not multiply the individual chance match probabilities
when multiple measurements are used for identification. However,
principal component analysis provides statistically independent
measurements corresponding to new, rotated, statistically indepen-
dent variables derived from our set of 38 variables. Probabilities
corresponding to independent variables can be multiplied.

A principal component analysis was performed on 38 measure-
ments on the barefoot impressions. We considered four popula-
tions: combined; male; female; and Caucasian men. We decided to

TABLE 8—Principal component analysis.

Estimated
Sum of Standard

Component Squared % of Variance Cumulative % Deviation
Number Loadings Explained of Variance Ratio ρ

a. Principal component analysis (Combined population)
1 12.61 33.17 33.17 0.010001
2 12.05 31.70 64.87 0.016458
3 5.22 13.73 78.61 0.061766
4 2.88 7.57 86.17 0.063171
5 2.78 7.31 93.49 0.021491

b. Principal component analysis (females only)
1 9.50 24.99 24.99 0.010001
2 9.45 24.87 49.86 0.010001
3 8.67 22.82 72.68 0.060864
4 3.06 8.06 80.74 0.082169
5 2.31 6.07 86.81 0.010612

c. Principal component analysis (males only)
1 10.12 26.62 26.62 0.010001
2 9.21 24.23 50.85 0.011960
3 9.13 24.02 74.87 0.021925
4 2.82 7.41 82.28 0.044762
5 2.43 6.41 88.69 0.021949

d. Principal component analysis (Caucasian males)
1 10.22 26.90 26.90 0.010001
2 9.12 24.01 50.92 0.039510
3 8.70 22.89 73.81 0.019398
4 2.84 7.47 81.28 0.047058
5 2.40 6.31 87.59 0.010001

use only first five principal components corresponding to orthogo-
nal eigenvectors, given that each component explains a substantive
proportion of the variability in the data. They were extracted to give
five new independent variables in each of the four populations.

In the remainder of this article we choose a window or bin width
equal to two intra-personal standard deviations or 2σI . This is
equivalent to taking α = 1 in the notations leading to our Theo-
rem 1. This choice is prompted by two practical aspects of barefoot
impressions, namely an abundant, low-cost supply of comparison
samples, and relatively large variability. In any event, our mathe-
matical framework holds true irrespective of the bin size.

Table 8 illustrates that the first five principal components account
for approximately 93.5% of the total variance of the 38 variables in
the case of the combined populations. The fifth component accounts
for at least 6% of the variance of the measurements of the footprint
impressions in each of the four populations. Table 8 gives separate
results for the four populations.

In the average case, we calculate the average based on normally
distributed measurements overlapping anywhere on the curve for
the entire population. For the combined population (See Table 8),
the average probability of a chance match is 7.88 × 10−10. The
latter is equivalent to stating that the odds of a chance match are
1:1,268,000,000 or 1 in 1.27 billion. The odds change for the various
populations. The cumulative worst-case and average chance match
probabilities are calculated in Table 9 based on Theorem 1 and
the statistical independence of the principal components. These
probabilities are derived from the estimated standard deviation ratio
given in the last column of Table 9, and these estimated average
case probabilities of a chance match and the odds of chance match
are found in Table 10.

The worst case deals with the eventuality where the subject has
the mean values as his measurements in every dimension; hence the
probability of a chance-match is higher. This gives a conservative
estimate of the chance match probability (II) and offers a good
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TABLE 9—Cumulative worst case and average probabilities of a match.∗

Component Cumulative % Estimated Standard Cumulative Worst Case Cumulative Average Case
Number of Variance Deviation Ratio ρ Probability of a Match Probability of a Match

a. Principal component analysis (Combined population)
1 33.17 0.0100 7.9795 × 10−3 5.6424 × 10−3

2 64.87 0.0165 1.0478 × 10−4 5.2392 × 10−5

3 78.61 0.0618 5.1606 × 10−6 1.8252 × 10−6

4 86.17 0.0632 2.5994 × 10−7 6.5028 × 10−8

5 93.49 0.0215 4.4570 × 10−9 7.8846 × 10−10

b. Principal component analysis (females only)
1 24.99 0.0100 7.9795 × 10−3 5.6424 × 10−3

2 49.86 0.0100 6.3673 × 10−5 3.1837 × 10−5

3 72.68 0.0609 3.0902 × 10−6 1.0929 × 10−6

4 80.74 0.0822 2.0237 × 10−7 5.0638 × 10−8

5 86.81 0.0106 1.7135 × 10−9 3.0318 × 10−10

c. Principal component analysis (males only)
1 26.62 0.0100 7.9795 × 10−3 5.6424 × 10−3

2 50.85 0.0120 7.6146 × 10−5 3.8074 × 10−5

3 74.87 0.0219 1.3320 × 10−6 4.7095 × 10−7

4 82.28 0.0448 4.7556 × 10−8 1.1892 × 10−8

5 88.69 0.0219 8.3277 × 10−10 1.4725 × 10−10

d. Principal component analysis (Caucasian males)
1 26.90 0.0100 7.9795 × 10−3 5.6424 × 10−3

2 50.92 0.0395 2.5148 × 10−4 1.2576 × 10−4

3 73.81 0.0194 3.8922 × 10−6 1.3763 × 10−6

4 81.28 0.0471 1.4609 × 10−7 3.6535 × 10−8

5 87.59 0.0100 1.1657 × 10−9 2.0615 × 10−10

∗ The k-th row of the last two columns are the products
∏k

i=1 erf ( ρi√
2

) and
∏k

i=1 erf ( ρi
2 ) respectively.

TABLE 10—Odds of a chance match for four populations.

Odds of a
Population Group Probability Chance Match

Combined Population 7.88 × 10−10 1:1.27 × 109

Females 3.03 × 10−10 1:3.30 × 109

Males 1.47 × 10−10 1:6.79 × 109

Caucasian Males 2.06 × 10−10 1:4.85 × 109

initial indication of the uniqueness of barefoot impressions. In the
pilot study, we only provided the worst case results. Theorem 1 finds
the average chance match probability taken over the entire range of
the population (III). This gives a more precise and representative
result compared to the worst case analysis.5

Discussion

This study is an enhancement of the earlier pilot study. We re-
peated the basic experiment but increased the sample size from
960 to 5755 and automated a crucial part of the data analysis. We
improved the heterogeneity of the population sample and added
subjects of mixed racial and national background. The repeated
sample proved to be an excellent sample of our total population. A
more rigorous and general mathematical framework for calculating
chance match probabilities was developed, whose application is not
limited to barefoot impressions.

5 We also performed a Likelihood Ratio approach to studying the barefoot
impression data. We used the multivariate normal (MVN) random-effect model
introduced by Aitken and Lucy (23). We found that the likelihood ratio approach
led to similar observations about uniqueness as expressed above and provided
no further advantage.

Our mathematical contributions include Theorem 1, where we
determine the average chance match probabilities and find their
ultimate relationship to the worst-case probabilities. We show that
population means do not affect chance match probabilities, whereas
population variances have a direct impact. It is noteworthy that in
terms of variance, our repetition sample and general population
sample are fairly close. Based on both Levene’s test and the F
test for comparing the variance of the two samples, all differences
are statistically insignificant (See Table 4). On the other hand, the
differences in mean height are due to a relatively larger female and
Asian component in the repetition sample than in the population
sample. These means, however, have no bearing to either variance
or eigenvectors critical to our study.

Another mathematical contribution of this paper is the application
of principal components as the appropriate research methodology
here. This guarantees statistical independence of the components
and trumps any objection to the use of the product rule. This gives
a practical option to avoid the predicament that other statistical
approaches have encountered. We use only the first five components
here to avoid the danger of using spurious eigenvectors6 , and in
concordance with our moderate approach to the calculations.

Previously, the outlines of the footprint impressions were man-
ually traced by a graphic artist onto celluloid sheets, and these
traces were then scanned. This process was time-consuming and
may have introduced an additional source of variation. This was re-
placed by a software program to determine the outline directly from
a scan of the actual impression, with very little human intervention.

6 Based on the rotated solutions, for all four populations under study, we had
five or more eigenvalues greater than one (the Kaiser criterion). In addition,
each of these eigenvectors explained more than 5% of the total variance in the
measurement data.
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From that point onward, all other methods of data collection were
identical to the pilot study.

Our approach was based on the comparison of personal to
the population variation, so accurate estimation of these variance
components was critical. The population variation estimates used
in the pilot study were based only on the small repeated sam-
ple, whose representation of the general population could not be
directly verified due to data compatibility problems. This was re-
solved here. In this study, the repeated sample had inter-personal
variations very close to those of the large population database in
critical demographic variables (height and shoe size) and most foot
measures. All population variance components used in the final
comparison came from the large population database, so the new
standard deviation ratio estimates were highly reliable. Further, all
eigenvalues and eigenvectors were constructed from the combined
large database, making the constructions more stable and robust.

In further studies of the shape of footprints, there is a sizeable
amount of additional data that can be generated from the inked
impressions collected in our database. It is possible to further an-
alyze these barefoot impressions by introducing more variables,
especially non-linear ones, to produce tighter bounds on the chance
match probability. The use of approximations of the shape and land-
marks (24) provides a rich set of opportunities. We may be able to
generalize our methodology to other human physical characteristics
that can be similarly quantified.
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APPENDIX 1—Proof of Theorem 1

Proof: a) It is easily confirmed that setting the partial derivative
of the chance match probability (2) with respect to xs equal to 0

∂P

∂xs

= 1√
2πσP

(
e
− (xs+ω−µP )2

2σP − e
− (xs−ω−µP )2

2σP

)
= 0

gives xs = µP . Moreover, the 2nd derivative ∂2
P (xs ,ω)
∂x2

x
< 0 at xs =

µP . Therefore P (xs, ω), viewed as a function of a single variable
xs , is maximized on each ω cross-section at xs = µP . In other
words, the maximum probability (or worst case) corresponds to the
situation when the subject mean is equal to the population mean
(see Fig. 5). Substitute y = (w − µP )/σP , to obtain

Pmax(ω) = 1√
2πσP

∫ µP +ω

µP −ω
e
− (w−µP )2

2σ2
P

dw = 1√
2π

∫ aρ

−aρ
e− y2

2 dy = erf (
√

2αρ/2).

b) We assume that the subject’s measure follows the general popu-
lation distribution. Then, the chance match probability that another
individual unrelated to the subject is a match to the first is expressed
as a double integral:

P̄ (v) = E(P (x, v)) = 1

2πσ2
P

∫ ∞

−∞
e
− (x−µP )2

2σ2
P

∫ x+v

x−v

e
− (y−µP )2

2σ2
P dy dx.

Note that P̄ (0) = 0 and

dP̄ (v)

dv
= 1

2πσ2
P

∫ ∞

−∞
e
− (x−µP )2

2σ2
P

d

dv

∫ x+v

x−v

e
− (y−µP )2

2σ2
P dy dx

= 1

2πσ2
P

∫ ∞

−∞
e
− (x−µP )2

2σ2
P

(
e
− (x−µP +v)2

2σ2
P + e

− (x−µP −v)2

2σ2
P

)
dx

= 1

2πσ2
P

e
− v2

4σ2
P

∫ ∞

−∞

(
e−(x−µP + v

2 )2/σ2
P +e−(x−µP − v

2 )2/σ2
P

)
dx.

Substitute twice: u = (x − µP + v
2 )/σP , u = (x − µP − v

2 )/σP , to
find

dP̄ (v)

dv
= 1

πσP

e
− v2

4σ2
P

∫ ∞

−∞
e−u2

du = 1√
πσP

e
− v2

4σ2
P .

Therefore,

P̄ (ω) = P̄ (0) +
∫ ω

0

dP̄

dv
dv = 1√

πσP

∫ ω

0
e
− v2

4σ2
P dv.

Substitute t = v/(
√

2σP ) and use the symmetry of the integrand,
to obtain the final formula:

P̄ (ω) = 1√
2π

∫ αρ
√

2/2

−αρ
√

2/2
e− t2

2 dt = erf (αρ/2).

c) The proof of this part follows from a single application of
L’Hôpital’s rule

lim
ω→0

erf (αρ/2)

erf (αρ/2)
=

lim
ω→0

2√
π

∫ ω/2σP

0
e−t2

dt

lim
ω→0

2√
π

∫ ω/
√

2σP

0
e−t2

dt

=
lim

ω→0

2

2σP

√
π

e−ω2/4σ2
P

lim
ω→0

2√
2σP

√
π

e−ω2/2σ2
P

=
√

2

2
.
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